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Abstract

This set of notes introduces my research experience at Stony Brook university. I took

part in the 2017's summer topology and geometry workshop animated by Moira Chas, Tony

Phillips and Dennis Sullivan. I would like to thank them all for considering Etienne Ghys's

recommendation, as well as for their supervising. I would also like to thank their students for

sharing pleasurable mathematical moments.

My work focused on the relationships between the dynamics, the geometry and the topol-

ogy of curves in hyperbolic surfaces. With Moira Chas, we proved a couple of experimentaly

supported conjectures concerning the topology of curves and their Fricke polynomials in the

pair of pants. In the process we constructed an algebra for multicurves on surfaces bearing

striking relationships with quantum topology. It provides a general setting for understanding

the relationship between Fricke polynomials, simple intersection numbers and the topology of

curves; which we applied to the punctured torus. We thus wrote an article, to which this set

of notes can serve as background and introduction.

Introduction

Free homotopy classes of closed curves in a topological 2-manifold of negative Euler characteristic
share deep relationships with the space of hyperblic structures on that surface, and some of those
are yet misunderstood.

The choice of a hyperbolic metric enables us to study their dynamical properties with respect
to the corresonding geodesic �ow. The dynamics and the geometry are equivalent in the sense that
we can compute lengths and areas knowing the dynamics of, and intersection numbers between,
closed curves. The �rst part of this set of notes is dedicated to a formula i found, expressing
the length of an arc as an expression involving the limit number of intersections with long closed
geodesics. It involves ergodic properties of the geodesic �ow so i shall �rst introduce the basics of
ergodic theory.

Pushing in this direction, we can try to understand the combinatorics of intersection numbers
between free homotopy classes of closed curves. This brought me to the more abstract setting
of Teichmüller space, measured foliations and geodesic currents. The objective was to unravel
some tight relationships between intersection numbers and the space of all hyperbolic metrics on
a surface.

Here's couple of results we proved with Moira Chas [2] motivating the introduction of the
hereafter de�ned notions. One can de�ne two relations on the set of (homotopy classes of) closed
curves: length equivalence and simple intersection equivalence. Two curves are length equivalent
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if they have the same length for any hyperbolic metric, and two curves are simple intersection
equivalent if they have the same intersection number with any other simple curve. An algebraic
procedure attaches to each curve a polynomial in several variables, called the Fricke polynomial,
which characterises its length equivalence class. It is known that length equivalence implies simple
intersection equivalence and we showed in elementary cases how to read a curve's simple intersection
class o� its Fricke polynomial. More generally we explained how to obtain simple intersection
equivalence as a tropical limit of length equivalence and deduced, from an algebraic structure of
multicurves in surfaces, a way to compute a tropical polynomial characterising a curves simple
intersection class. We also found a state sum formula for the Fricke polynomial therefore giving
a (quantum) topological understanding of length and simple intersection equivalence, as well as
providing strong analogies with the Kau�man bracket in knot theory [3].

Preliminary notions

Throughout the paper we often work with a genus g surface S havingb boundary components or
punctures, and negative Euler characteristic: 2g − 2 − b < 0. Any metric considered on them
should make geodesic boundaries. If b > 0 then its fundamental group is a free group on 2g+ b−1
generators and if not it has presentation < a1, b1, . . . , ag, bg |

∏
[ai, bi] >. One can start proving

this for null genus and any number of boundary components, that is a punctured sphere, which is
homotopically equivalent to a bouquet of circles. The case b = 1 is also easy to handle by cutting
S into a 4g-gon and taking away the the point in the middle as explained in [6]. Applying Van
Kampen's theorem to appropriate connected sums gives all the other cases.

The free homotopy classes of closed curves on a surface will be denoted C and they correspond
to the connected components of the space of continuous maps of a circle in the surface endowed
with compact open topology. This space can also be identi�ed with the conjugacy classes of the
fundamental group π1 (of the surface itself) and if this group is freely generated by Q then the
elements of C are freely reduced cyclic words on Q. For any w ∈ C we can therefore de�ne the
word length in the generators Q as being the length of a shortest cyclic reduced word representing
w. If the metric has negative curvature, each class in C contains a unique geodesic. Existence
corresponds to �nding a minimum of the energy functional in the class of w which follows from
Ascoli's theorem, whereas unicity is due to negative curvature. The Milnor-Svarc's lemma gives
a quasi-isometry between word length and geometric length for closed geodesics. The article [1]
goes into more detail about these notions.

If c : [0, 1] → S is an arc in some surface, we denote l(c) its length and nc(γ) its geometric
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intersection with another curve γ and if w is a homotopy class of curves we write wl(w) its word
length. Finally we denote by S the set of homotopy classes of simple curves in a surface.

Crofton-like formula in hyperbolic surfaces

Motivation

In the Euclidean plane, the Crofton formula (see [8] for much more on integral geometry) expresses
the length of a recti�able curve c as an integral over the �rst a�ne grassmanian, that is the space
of lines, of the intersection number of c with each line. The space of lines is for that purpose
endowed with the invariant Haar measure for the a�ne isometry group dγ = 1

2
dr ∧ dθ where

γ : cos (θ)x+ sin (θ) y = r.

l(c) =

�
nc(γ) dγ =

1

2

�
nc(r, θ) dr dθ

Santalo proved in [7] a similar formula in the hyperbolic plane. But in a closed hyperbolic
surface, ergodicity of the geodesic �ow for some well chosen invariant measure ensures that one
(generic) geodesic is su�cient to cover the whole space in a uniform manner and one can therefore
hope to �nd the length of c examinig the number of intersections with larger and larger portions
of that one geodesic. From the Bowen-Margulis equidistribution property of closed geodesics we
derive a summation formula over w ∈ C of the intersection numbers with c but it is essentially in
the limit that w gets long that the information for calculating c 's length is encoded. Therefore, one
can ask what additional information one can recover by considering the whole family of integers
(nc(w))w∈C or by restricting this family to simple curves.

Ergodic dynamical systems

This section relies mostly on [9], de�ning and stating what we need to explain some Crofton-
�avoured formulas in closed hyperbolic surfaces.

Measure preserving transformations and Poincaré's recurrence theorem Let (M,T , µ)
be a �nitely measured space, and T : M → M a bijective measurable function. It is often the
case that T is a homeomorphism on a compact Hausdor� space with Borel sigma algebra. The
transformation T preserves µ if T∗µ = µ which means that for every measurable set A ∈ T
we have µ(T−1A) = µ(A). The measure preserving property can also be stated dualy in terms
random variables by supposing that for any f ∈ L 1

µ (M) we have
�
f dµ =

�
f ◦T dµ. Under these

conditions Poincaré's recurrence lemma says that almost all points are recurrent. This means that
if we consider any set U ∈ T , then for almost all x ∈ U there exists an in�nite increasing sequence
of integers (ni) such that T ni(x) ∈ U . Note that this includes the case where µ (U) = 0 in which
case �for almost all� holds even if no points in U are recurrent.

Ergodic �ows and Birko�'s theorem The right concept of indecomposability for a measure
preserving dynamical system (M,T , µ, T ) is that T should be ergodic for µ : any U ∈ T satisfying
µ(T−1A) = µ(A) must verify µ(A) ∈ {0, 1}. The �rst main theorem is due to Birko� and states
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that for such a system, the time average of the values of any function f along an T -orbit converges
almost always to the space average of X . This is in fact equivalent to ergodicity.

Theorem. If (M,T , µ, T ) is an ergodic dynamical system, then for any f ∈ L 1
µ (M) and for

almost all x ∈M , the time averages Sn(x) = 1
n

∑
0≤k<n f ◦ T k(x) converge to

�
f dµ.

Mixing property The transformation T is mixing if for any f, g ∈ L 2
µ (M) , the functions

f ◦ T k and g become asymptotically independent for large k :
�

(f ◦ T k).g dµ→
(�

f dµ
) (�

g dµ
)
.

Applying this to the characteristic functions of measurable sets A and B means that the mass
in A gets uniformily distributed in the measured space (M,µ). Mixing implies ergodicity implies
measure preserving but none of these implications have reciprocals. If we de�ne dν0 = ρ.dµ (for a
density function ρ ) and consider it as the initial state of our system, then the mixing property sais
that the future distribution states νk = (f ◦T k) dµ converge to a positive multiple of the invariant
measure dµ.

Continuous time �ows Consider now a one parameter group (ϕt)t∈R of measurable transfor-
mations acting on (M,T , µ) such that if f(x) is a measurable function on M then f ◦ ϕt(x) is a
measurable function on M × R. We call (ϕt)t∈R a �ow. If the �ow is measure preserving, that is
if each ϕt preserves µ, then Poincaré's recurrence theorem still holds taking care to de�ne a point
x ∈ U as recurrent if there exists an increasing sequence ti → ∞ such that ϕti(x) ∈ U . The �ow
is ergodic for µ if any measurable subset invariant under all the ϕt has null or full measure; and
in that case Birko�'s theorem says that St(x) = 1

t

� t
0
f ◦ ϕs(x) ds converges almost everywhere to�

f dµ. The mixing property becomes for almost all x ∈M ,
�

(f ◦ϕt(x)).g dµ→
(�

f dµ
) (�

g dµ
)
.

The geodesic �ow

Ergodicity and Mixing Let's consider the unitary tangent bundle M = T1S of a surface
(S, h = ds2). There is a natural distance function onM given locally for x = (p, u); y = (q, v) ∈M
by d(x, y)2 = l(γ)2 + hq(trγ(u), v)2 where γ is the geodesic from p to q and trγ(v) the parallel
transport of the vector v along γ. This distance arises from a Riemannian metric which in turn
gives a volume form dµ and a borelian measure µ onM named after Liouville. If S was a hyperbolic
surface, this measure could also be constructed from the Haar measure of Isom(H2) = PSL2(R),
since this group acts transitively and properly-discontinuously by isometries on S. The geodesic
�ow ϕt(p, v) on (M,µ) preserves this Liouville measure.

Theorem. (Hedlung-Hopf) The geodesic �ow on a surface with (constant) negative curvature is
ergodic and mixing for the measure µ.

Equidistribution of closed geodesics Every closed geodesic γ de�nes a geodesic-�ow-invariant
measure de�ned by its action on functions:

µγ(f) =
1

l(γ)

�
γ

f dµ =
1

l(γ)

� l(γ)

0

f(ϕt(x)) dt

Let ΓL be the set of closed geodesics of length smaller than L (�nite set indexed by C ). Margulis
showed that card(ΓL) ∼ exp(L)/2L. The following result means that the closed geodesics uniformly
�ll in the space as they get longer.
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Theorem. (Bowen, Margulis) In constant negative curvature, the sequence of measures

ΣL =
1

card(ΓL)

∑
γ∈ΓL

µγ

converges weakly to the Lebesgue measure σ on S (with volume form dσ).

Bowen-Margulis' theorem should be understood in a more general setting. The weighted se-
quence of normalised Dirac measures along closed geodesics always converges to a geodesic-�ow
invariant measure with maximal entropy. In negative curvature, this maximal entropy measure is
unique and it corresponds with the Liouville measure if and only i� the curvature is constant.

Two formulas for curve length via geodesics

Main idea In a hyperbolic surface S, ergodicity of the geodesic �ow gives a mean to compute
the area of a region by considering the proportion of time that a generic geodesic passes through it.
If the region looks like a thin rectangular strip around an arc, then entering the region or cutting
the arc is about the same and the area of the region divided by its width is close to the arc's
length. So the length of an arc is approximated by the average number intersections with a generic
geodesic. Poicaré's recurrence theorem implies that closed geodesics can approximate arbitrarily
well any geodesic, so that the limit number of intersections can be taken on a sequence of closed
geodesics. Those ideas are illustrated in the following pictures.

Let c : [0, 1]→ S be any smooth curve and consider V η = V η(c) the (η/2)-neighborhood of c in
S. Since c is compact, σ(V η)/η → l(c).

Limit formula Applying Hedlung-Hopf's theorem to the characteristic function χη of V η and
dividing by η, we get for almost any geodesic γ(t) = ϕt(p, v):

1

t

t�

0

χη(γ(u))

η
du −→

t

σ(V η)

η
(1)

Fix some small positive ε, then choose η satisfying |σ(V η)/η − l(c)| < ε and such that for all large
enough t the left hand side in 1 di�ers from 1

t
nc(γ[0,t]) of at most ε. I assume this last condition

is possible to realize since γ can be chosen to verify both the mixing property and to intersect c
transversally with an angle statistically close to π/2. This angle distribution is concentrated so
that long incursions in V η will be scarse enough to average out over time (see [5]).

Chose t such that 1 is an equality ±ε : triangle inequality gives
∣∣1
t
nc(γ[0,t])− l(c)

∣∣ < 3ε so that
1
t
nc(γ[0,t])→ l(c) . By the Poincaré recurrence theorem we can chose a strictly increasing sequence
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to in�nity (tn) such that (γ(t), γ̇(t)) passes very close to its initial value(p, v). By connecting γ(tn)
to p and taking the closed geodesic wn in the same homotopy class we get a curve which stays
close to γ[0,tn] for large tn since this last is alsmost a shortest path. So chosing p far from c we have
for large n: nc(wn) = nc(γ[0,tn]). Hence nc(wn)/l(wn)→ l(c) .

Summation formula It is tempting to generalise the previous result as a limit on any word
w ∈ C and say lim

w∈C

nc(w)/l(w) = l(c). This is not true since one can consider a sequence of very long

simple curves which won't �ll in the whole space. But we know that on average they do �ll the
space in a uniform way, so we can hope for a similar formula averaging on geodesics.

Applying Bowen-Margulis' theorem to the characteristic function f of V ε we get:

1

card(ΓL)

∑
γ∈ΓL

χη(γ)→ σ(V η)

Dividing by η and inverting the limits η → 0 and L→∞ as before we �nd:

1

card(ΓL)

∑
γ∈ΓL

nc(γ)→ l(c)

Here's another (yet incomplete) attempt to prove this, avoiding the knowledge of the angle
distribution at intersections which serves the inversion of limits, but using notions about geodesic
currents introduced later on. Let's work in the universal cover S̃ = H and use Otal's �Crofton
formula� ([4], proposition 3). This formula asserts that the length of a closed geodesic is equal to
the intersection form between the geodesic current it induces and the Liouville current associated
to the metric on the surface. Liouville's current is constructed by lifting the metric m to the unit
tangent bundle of the universal cover, and contracting its associated volume form with the geodesic
vector �eld in order to get a transverse measure to the geodesic �ow, hence a current λm. One can
imagine measuring the length of a yellow �n in Esher's circle limit III picture by estimating the
proportion of circles orthogonal to the boundary which intersect one chosen �n somewhere in the
drawing.
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Consider the case where c is a geodesic arc in S and let c̃ be one of its lifts to the hyperbolic
plane. The length of c is thus equal to the Liouville measure of the set of geodesics of S̃ intersecting

c̃ , formally: λm

(
{g ∈ G(S̃); g ∩ c̃ 6= ∅}

)
. The sum ΣL can be seen as a weighted multicurve, and

therefore also as a geodesic current. However, although the theorem ensures that ΣL converges
weakly to the Lebesgue measure σm , what we need now is a weak convergence towards λm in
the space of currents. Assuming this is true would precisely give the desired formula and the case
where c is a recti�able arc follows by approximation.

Finally, i think one could also prove the summation result by using density (by Poincaré's
lemma) and some correct notion of equidistribution with respect to the metric for the lifts of all
closed geodesics inside the set of all geodesics of the hyperbolic plane (by Bowen-Margulis). Then
the integral in Santalo's hyperbolic Crofton formula could then be approximated by the summation
expression obtained from Bowen-Margulis' theorem.

Mapping class group and Teichmüller space

Structures on closed surfaces

A closed oriented surface S (compact oriented topological 2-manifold) is characterised, modulo
homeomorphism, by its genus.

Conformal structures Such a topological manifold can always be endowed with a Riemannian
metric by averaging with a partition of unity some chart pull-backs of a metric in the plane. Rie-
mannian metrics provide a measurement of angles in the tangent spaces, and two metrics yield the
same angle-measurement i� they are conformally equivalent, that is they di�er by multiplication of
a positive function. Choosing a measurement of angles on the tangent bundle is called a conformal
structure, so conformal structures are the same as Riemannian metrics up to multiplication by
positive functions.

Complex structures It is remarkable that any closed orientable surface can be realized as a
Riemann surface: one can chose a new compatible atlas of charts with values in the complex
plane whose transition functions are holomorphic. Compatible means that the transition maps
arising from an old chart and a new chart are homeomorphisms (or di�eomorphisms if we start
with a smooth manifold). Such an atlas is called a complex structure on S and it also de�nes
a way of measuring angles in the tangent space at every point. This is because the transition
maps are conformal (their di�erential preserve angles) so that one can pull-back consistently the
angle-measurement from the complex plane to the surface. The conformal class of metrics hereby
associated to a complex structure is such that the multiplications by i in the tangent planes are
isometries (the metrics are Hermitean for the Riemann surface) so in some sense the in�nitesimal
circles de�ned by the conformal class of metrics and the complex structure are the same.

Hyperbolic structures Another remarkable fact which is a corolary of the uniformisation the-
orem, is that if the genus is greater than two, then any conformal class of metrics contains a
unique metric of constant −1 curvature called a hyperbolic metric (because it induces a local
isometry with the hyperbolic plane). So conformal structures up to conformal mappings, complex
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structures up to biholomorphic mappings and hyperbolic metrics on S considered up to isometry
are all the same. This happens only in dimension 2 where the conformal group of the unit disc
Möb(∆), the automorphisms of the hyperbolic plane Aut (H) and the isometries of Poincaré's

metric Isom

(
∆, 2|dz|

(1−|z|2)

)
all miraculously coïncide.

Given a hyperbolic metric on S, the developing map Dev : S̃ → H and the holonomy map
hol : π1 (S) → Aut (H) identify its universal cover with a subset of the hyperbolic plane and its
fundamental group with a subgroup of hyperbolic isometries (de�ned by Dev ◦α = hol(α) for any
α ∈ π1 (S)). Since S is complete, it is isometric to Γ\H for some Fuchsian group Γ : its fundamental
group. Reciprocally, a local homeomorphism Dev : S̃ → H and a homomorphism hol : π1 (S) →
Aut (H) such that Dev ◦ α = hol(α) for any α ∈ π1 (S) de�nes a unique hyperbolic structure
with those developping map and holonomy. A hyperbolic metric on S is therefore equivalent to a
faithfull representation of its fundamental group into a discrete subgroup of Aut(H), de�ned up to
conjugation. From now on, S shall always be a closed topological surface with genus greater than
two.

Spaces of structures

Teichmuller space We call (X, f) a marked pair if f : S → X = Γ \ H is a homeomorphism
to a hyperbolic surface. Marked pairs are tantamount to marked hyperbolic structures on S by
pulling back the metric on X with the marking homeomorphism f , and the holonomy map is
then given by f∗ : π1 (S)→ Γ. We de�ne Teichmuller space T (S) as the set of all marked pairs up
to the equivalence relation (X, f) ∼ (Y, g) if g ◦ f−1 is isotopic to an isometry between X and Y .
Put di�erently, it is the set of marked hyperbolic metrics up to composition by isometries isotopic
to the identity. Since equivalent marked pairs give rise to conjugate holonomy maps, Teichmuller
space injects in Hom (π1 (S) , Aut (H))/ conjugation. So we can successively put the compact
open topology on Aut (H) (homeomorphic to the natural one on PSL2 (R)) and the discrete one
on π1 (S), then the compact open topology on Hom (π1 (S) , Aut (H)) and �nally the quotient
topology on the resulting space to de�ne a natural topology on T (S). The topology thus de�ned
is separated and we shall later on construct some compatible coordinates on T (S).

Mapping class group De�ne the mapping class group MCG (S) = Homeo+ (S)/Homeo0 (S)
to be the group of orientation preserving homeomorphisms of S up to isotopy. The mapping class
group is �nitely generated by the so called Dehn twists arround 2g+ 1 well chosen curves. A Dehn
twist arround any simple closed curve geometrically cuts the surface along the curve and glues
back after making a 2π twist. This gives a well de�ned homeomorphism up to isotopy (which is
all we need).

The mapping class group acts on Teichmuller space via ϕ·[X, f ] = [X, f ◦ ϕ−1] and the quotient
space is the moduli space of all hyperbolic metrics on S up to isometries. Thurston liked to imagine
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dressing the surface with some rigid all-in-one clothing assembled with zips, and then say that a
point in moduli space corresponds to the clothing itself while Teichmuller space also records how it
is worn. Unzipping and adding a twist moves the point in Teichmuller space but not the intrinsic
measure of length in the surface, so the point in moduli space remains unchanged.

Length functions If α is a homotopy class of closed curves in S then f∗ (α) is a well de�ned
class of curves in X and corresponds, via the holonomy map, to a hyperbolic translation of H.
Actually, this translation is well de�ned up to conjugation (because C is identi�ed with the set of
conjugacy classes of the fundamental group), and the ambiguity amounts to choosing one of the
lifts of f∗ (α) as an axis for the hyperbolic translation. Note that the trace (translation parameter)
tr (f∗α) is well de�ned on a conjugacy class of translations and the length of the geodesic for the
corresponding metric lα [X, f ] is also well de�ned because equivalent points in Teichmuller space
correspond to conjugate maps f∗ in Γ. They are related by the formula:∣∣∣∣tr (f∗α)

2

∣∣∣∣ = cosh

(
lα [X, f ]

2

)
The maps (lα)α∈S give rise to L : [X, f ] ∈ T (S) −→ (lα [X, f ])α∈S ∈ RS

+ which turns out to
be a proper embedding, but the next paragraph proves an even more precise result.

Fenchel-Nielsen coordinates A closed surface S of genus g can be decompsed into 2g − 2
pairs of pants with geodesic boundary by choosing a maximal set of non intersecting 3g− 3 simple
closed geodesics (αi). A hyperbolic metric of the surface is uniquely determined by the metric on
each pair of pants, and the gluing parameters encoding which congruent boundaries do we glue
together and with what angles. But the set of decompositions into pairs of pants is discrete (lying
inside S 3g−3) and there is a unique hyperbolic structure on a pair of pants with geodesic boundary
components of assigned length.

This last fact can bee seen by cutting the pair of pants along its seams (the geodesics minimising
the distance between pairs of boundary components, which are unique by negative curvature) to
obtain two right angled hyperbolic hexagons with three non incident sides of prescribed length;
and such hyperbolic hexagons are unique up to isometry. This proves that a hyperbolic metric is
uniquely determined by the lengths of 3g− 3 simple geodesics along with the glueing angles (mod
2π).
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For a point in Teichmuller space the twisting parameters should not be mod out by 2π so that
we get a set of coordinates in R3g−3×R3g−3

+ . The twisting parameters can be replaced by recording
the lengths of dual simple curves (βi) to the (αi) such that i(αi, βj) is one or two if i = j and
zero otherwise, along with those of the Dehn twists

(
β

′
i = Tαiβi

)
. So Teichmuller space embedds

in R9g−9
+ ⊂ RS .

Canoeing across geodesic currents

A simple question for lengthy thoughts

On a closed surface with negative euler characteristic χ = 2− 2g; metrics and closed curves share
some common features. Indeed, negatively curved metrics can be evaluated on curves since there
is a unique geodesic in each class. So there is some kind of duality operating here, and when there
is a duality one wants to know its degree of separation.

We have explained how geodesics and intersection numbers with those geodesics could enable
one to compute geometric length in constant negative curvature. Better even, Fenchel-Nielsen
coordinates show that a marked hyperbolic metric is uniquely determined by its evaluation on
a set of 9g − 9 simple curves. In [4], Otal proved that an isotopy class of a (not necessarily
constant) negatively curved metric is uniquely determined by its marked length spectrum, that
is the indexed family of all the closed curve's lengths. This result uses more simple curves to
extract more information on the metric, and it is sharp in the sense that the indexing is vital to
the statement's truth. So one can recover some informations about a metric by evaluating it on
curves. What about the converse ? What information can one recover on a free homotopy class of
curves by knowing its length for every hyperbolic metric ? Two curves are called length equivalent
if they have the same length whatever the marked hyperbolic structure put on the surface.

One can also evaluate two curves γ, δ ∈ C on one another by computing their intersection
number i(γ, δ). And we have similar results: any δ ∈ C is determined by (i(γ, δ))γ∈C and any
δ ∈ S is determined by its intersection numbers with 9g − 9 well chosen curves. We also have
similar questions: what does(i(γ, δ))γ∈S say for γ ∈ C ? Two curves are called simple intersection
equivalent if those families are the same. This analogy between curves and metrics suggests they
might �t in a common setting, and it is to describe that picture that that we introduce the following
ideas. The relationships between length equivalence and simple intersection equivalence are the
starting point of our common article with Moira Chas, where we give topological descriptions for
those notions.
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From simple curves to measured geodesic laminations

Measured laminations A geodesic lamination L of a Riemannian surface S is a a closed subset
decomposed as a disjoint union of complete simple geodesics. Tipically, a geodesic lamination
L contains a non countable set of non closed geodesics, each of them being dense in L, along
with a few isolated closed curves. A tranversal cut would then look like a Cantor set. Here's a
graphical suggestion of a geodesic lamination in the genus two closed surface, along with its lift to
the Hyperbolic plane.

A transverse measure λ on L is a familly of positive Radon measures
(
λ|k
)
k
de�ned on each arc

k : [0, 1]→ S transverse to L which is compatible with restrictions to subarcs and invariant under
holonomy : a homotopy between two transverse arcs k, k′ maintaining the number of intersections
with L constant all along, will identify λk with the pull back of λk′ by the overall transformation
naturally induced by the homotopy. This holonomy property implies that the measures have
support included in L. We noteML(S) the set of measured geodesic laminations and PML(S)
the corresponding projectivized set. We de�ne on the space of measured laminations, the weak
topology whose test functions are the continuous f : k → R with compact support contained in a
generic geodesic arc (ie transverse to all simple complete geodesics or equivalently, not contained
in any simple complete geodesic) and the projectivized set is given the natural quotient topology.

Long simple curves Given a simple curve α ∈ S and a positive number t > 0, one can de�ne
a measured lamination µt.α by (µt.α)|k (E) = card (E ∩ α) for every borelian set E ⊂ k inside a
transverse arc k to α. One could also consider weighted simple multicurves, that is positive linear
combinations of simple curves which do not intersect each other, and their corresponding measured
laminations

∑
tαµα. It turns out that weighted simple multicurves, and even only weighted simple

curves, are dense in the space of all measured geodesic laminations. One can construct very long
simple curves by repeatedly applying Dehn twists to any initial simple curve. One can imagine
that for some sequence of longer and longer simple curves uniformally �lling the space (normalised
by their geometric length), the associated sequence of measured laminations will eventually give
the natural lebesgue measure on each transverse arc. This is very similar to the Crofton-�avoured
formula's we presented.

A sphere of simple curves The intersection form i(·, ·) extends naturally to weighted simple
curves by linearity and then to measured laminations by continuity. A �rst step towards our
uni�cation is identifying a measured lamination λ ∈ ML(S) with the dual function i(λ, ·) ∈ RS

+ .
This identi�cation map agrees with projectivization to give λ ∈ PML(S) 7→ i(λ, ·) ∈ P

(
RS

+

)
. If

RS
+ is endowed with the product topology and the projectivized set with the quotient topology,

then this identi�cation is actually an embedding and yields a homeomorphism from the set of
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projective measured laminations to a sphere S6g−7. This is one of the gems in the theory we owe
to Nielsen-Thurston.

Geodesic currents

A geodesic current on S is π1 (S)invariant Radon measure on the set G(S̃) of all geodesics of
the universal cover S̃ ∼= H. Radon means Borelian (de�ned on the Borel's sigma algebra), locally
�nite (any point has a neighorhood of �nite measure), and inner regular (the measure of a set is
the supremum of the measures of the compact sets it contiains). The set of di�erences between two
geodesic currents forms a vector space which we make into a topological space by endowing it with
the weak uniform structure (de�ned by the family of semi-distances df (µ, ν) = |µ(f)− ν(f)|where
f ranges in the compactly supported continuous functions on G(S̃)). This de�nes our topology on
the space of currents which we denote Curr(S).

As a �rst example, lets see how a measured lamination (L, λ) induces a geodesic current. All
the lifts of L to S̃ form a π1(S) invariant subset L̃ ∈ G(S̃) and for any transverse arc k̃ to L̃, we
can de�ne λ̃

(
{g ∈ G(S̃)|g ∩ k̃ 6= ∅}

)
= λ|k(k). This is enough to specify λ̃ as a Radon measure

on G(S̃) and gives an embeddingML(S) → Curr(S) of the sphere of measured laminations into
the space of currents.

Another source of examples is for γ ∈ C , the set of its lifts γ̃ is a π1 (S) invariant closed subset
of G(S̃) and its counting measure (sum of dirac masses) de�nes a current µγ. We can similarly

associate a geodesic current to a multicurve
∑
tγγ ∈ R(C )

+ and those are dense in the space of
all currents Curr (S). We can henceforth extend the intersection form i (·, ·) to Curr (S) and we
can then prove that its light cone is the set of measured laminations: i (µ, µ) = 0 if and only if
µ ∈ML (S).

Thurston's compacti�cation Let's associate a geodesic current to a marked hyperbolic metric
[X, f ]. Such a metric lifts to the universal cover and then to its unit tangent bundle T1S̃. The
corresponding volume form can be contracted with the geodesic vector �eld to get a 2 form, giving
a transverse measure to the geodesic �ow which can be in turn interpreted as a mesure on G(S̃):
the Liouville measure associated to the metric. Since π1 (S) acts by isometries the measure is
invariant. It is also borelian and inner regular since it arises from a 2 form.

The Liouville measure de�nes an embedding of T (S) ∼= B6g−6 into Curr (S) and it is com-
pacti�ed by the sphere of measured laminations. This compacti�cation is equivariant with respect
to the mapping class group's action. This means that for any mapping class ϕ ∈ MCG (S), if a
sequence of marked metrics [Xn, fn] converges to a projective measured lamination µ ∈ PML (S)
then [Xn, fn ◦ ϕ−1] converges to ϕ · µ where this last action of a mapping class on a projective
measured lamination coincides both with the continuous prolongation of its action on S (dense
subset) and as the pull back of the measure µ once interpreted as a current.

The intersection form between a marked metric λ and a curve γ is the length of the curve for
that metric. Moreover, Bonahon proved that a sequence of metrics λn converges to a projective
measured lamination α if and only if for all curves γ, γ′ ∈ C ,

λn(γ)

λn(γ′)
−→ i(α, γ)

i(α, γ′)

Therefore the smooth function Φγ,γ′(·) = i(·,γ)
i(·,γ′) de�ned on T (S) can be continuously extended
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to ∂Φγ,γ′ on PML (S). This function Φγ,γ′ provides a better insight on the relationship between
length equivalence and simple intersection equivalence. Indeed, they respectively amount to asking
for Φγ,γ′ ≡ 1 and ∂Φγ,γ′ ≡ 1 and this is coherent with the fact that length equivalence implies
simple intersection equivalence.

Conclusion

In [2] we therefore think of simple intersection equivalence as length equivalence at in�nity, and
make this more precise by specifying the algebraic behaviour of the intersection form at in�nity:
the intersection number between a curve γ and a simple curve α is akin to a tropical limit of
the length of γ for a sequence of marked metrics converging to α. While the Fricke polynomial
characterises length equivalence, we provide a tropical version of that polynomial characterising
simple intersection equivalence. We derived this from our state sum formula drawing a parallel
between the Fricke polynomial of length equivalent curves and the Jones polynomial of mutant
knots.
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